

Forest to furnace

New Zealand's biomass opportunity

Oliver Howitt

EECA's strategy

Our mission

Mobilise New Zealanders to be world leaders in **clean and clever** energy use.

Our desired outcome

Energy users save energy, money and reduce emissions. Energy productivity and resilience improves.

Energy efficiency first

Efficient energy use is the first option users adopt.

Empower energy users

Users are empowered to control their energy.

Accelerate renewable energy

Users transition to low emissions energy.

EECA's Levers

Regulation

Of products, processes, and systems.

Information and motivation

To promote clean and clever energy choices.

Targeted investment and support

To demonstrate and scale up energy efficient technologies and renewable energy use.

RETA Biomass Insights

RETA develops what is required for regional fuel switching for industrial process heat

Regional stakeholder kick off meeting

- Process heat users
- Transpower & EDBs
- Forest owners & wood processors
- EDAs and councils
- Iwi

Demand assessment workstream

 Site thermal requirements and decarbonisation projects

2

Regional stakeholder workshop

3

• Present back findings from the workstreams and gather feedback

Final integrated report

4

- Combine workstream analysis and construct regional pathways
- Write, design, and publish report

Electricity availability workstream

• Spare electrical capacity; work and cost to electrify sites

Biomass availability workstream

Regional availability and cost
of potential biomass sources

Process heat uses a lot of fossil fuel

800

Sites included in RETA programme

6,000 MW

Fossil fuelled installed capacity

20 PJ

Baseline annual coal use

55 PJ

Baseline annual piped fossil gas use

Energy efficiency and heat pumps are important

	Projects assessed	Fossil Fuel Reduction (PJ)	Fossil Fuel Reduction (MW)	Fossil Fuel Reduction
Energy efficiency	600	14	1,100	18%
Heat pumps	500	8	700	11%

Are you involved in energy efficiency and heat pump projects?

NZ will harvest 30 – 40 million tonnes of wood per year

Around 2 million tonnes of forest residues could be available per year

Cutover and landing residues – hard to recover!

Around 7 to 8 million tonnes per year could be available for bioenergy

Potential demand for biomass for process heat is around 4 million tonnes per year (30,000 TJ)

Economic pathway has 400 biomass projects

400

Sites with biomass boilers in the economic pathway

2,500 MW Biomass boiler capacity

30 PJ

Annual biomass energy demand

4 Mt

Annual biomass demand ('green' basis)

Biomass considerations

Biomass projects can be more complex than gas and electricity

- Switching from coal to biomass more straightforward than from gas.
- Sites need to consider fuel trucking, storage, and fuel feed systems.
- Additional requirements for consenting (PM10 emissions, air discharge consents, dust mitigation, fire risk engineering).

Biomass fuels are different, requiring different boilers, with a CAPEX / OPEX trade off

Parameter	Hog fuel	Woodchips	Wood Pellets
Energy (GJ/tonne)	~7	~12	~18
Cost per GJ	\$	\$\$	\$\$\$
Boiler cost	\$\$\$	\$\$	\$
Storage type	Outside or covered	Outside or covered	Watertight
# deliveries & storage footprint	3.2 x coal	1.8 x coal	1.3 x coal

Why aren't we seeing biomass projects?

- Coal is cheap compared to biomass
- Transitioning from piped gas to biomass is complex
- Biomass projects have high capital costs
- Perceived or actual lack of firm, long-term biomass supply at reasonable cost
- Insufficient, or incomplete information

Let's work together

We are planning initiatives to accelerate the biomass market

Watch this space...

What's blocking biomass projects?

Let's address these together.

- How can we progress each stage of the "funnel"?
 - How do we enhance understanding?
 - If biomass is best option, how to develop business cases?
 - Are there better financing mechanisms?
- Can we be smarter about projects is there a collective play (economies of scale)? Grouped procurement? Innovative solutions?

Ngā mihi

Connect: oliver.howitt@eeca.govt.nz

