Electric Boiler Workshop

Jonathan Pooch - Managing Director (DETA)

8

Alelign Gessese - Energy Lead (LUMEN)

Tuesday 27th May 2025

Sustainable action for a better tomorrow

Jonathan Pooch

Managing Director

Alelign Gessese

Energy Lead

Hosting today's Workshop

NZ Energy Emissions

NZ emissions based on:

https://emissionstracker.mfe.govt.nz/#NrAMBoEYF12TwCIDiAnA9gZ042wBM4+okALHgBxK7RA https://www.eeca.govt.nz/assets/Resources-EECA/EEUDB_Summary_2017.xlsx

What is the opportunity?

Cost of delivered heat?

Electric Boilers - Technical Introduction

- Working principle electrical energy to heat
- Energy input and conversion
 - Power supply requirements
 - Conversion efficiency
- Performance characteristics
 - Pressure and temperature range
 - Heating capacity
 - Ramp-up time and controllability
 - Peak load and its management
 - Response time and turndown ratio
- Types of electric boilers
 - Resistive type
 - Electrode type
- Key components pressure vessel, elements/electrodes, pumps,...
- Control systems and integration
 - Temperature and pressure control
 - SCADA/BMS integration
 - Remote monitoring and automation capability

Heating via resistive elements

Heating via electrodes & conductive water

Electric Boilers - Technical Introduction

- Water treatment requirements
 - Hardness removal, dissolved oxygen control, TDS control, PH, corrosion inhibition...
 - Conductivity control (very important for electrode boilers)
- Suitable applications and industries
 - Low to medium temperature process heat (100°C 250°C)
 - Backup and peak load boilers
 - Transition away from fossil fuels
- Feasibility considerations
 - Pre-work requirements (thermal metering, understanding demand profile, how is thermal energy used and where)
 - Efficiency first what are the things that can be done first
 - What type of technology fits my site electrode vs electric, HW vs steam
 - Potential of hybrid systems improved redundancy and beyond
 - Financial analysis
 - Capture limitations

deta LUMEN CEP2025

Thermal Meter

Case Study - Mataura Valley Milk

- 20MW electrode high pressure (40bar_q) boiler
 - Completely removes the need for the existing coal boiler
 - First high pressure electrode boiler in New Zealand
- Key enablers:
 - Motivated client (and shareholder)
 - Market pressure from customers wanted to differentiate away from commodity based products
 - Long term, low cost electricity deal from energy retailer
 - GIDI Funding
- Key challenges:
 - Electrical network connection
 - New technology deployment
 - Ownership change followed by subsequent change in key customer base
 - Integration within existing plant
 - Live commissioning

Jonathan Pooch

Managing Director

Alelign Gessese

Energy Lead

LUMEN

Workshop Discussion and Structure

Group Exercise / Breakout Discussion

- For an industrial site with two diesel fired steam boiler systems (1.2MW each) with the following characteristics
 - Peak demand measured at 1.4MW with 95% of the loads below 1MW over 12 months
 - 20 % of the energy goes to domestic hot water and washdown water heating to 65°C
 - The rest is used for processing at 150°C or more
 - Operates 24/7
- Group discussion on where and how an electric boiler would fit in this situation?

WORKSHOP QUESTION: Capex Management

Capex Management

Key considerations:

- Pre-design and system design
- Project management
- Electrical infrastructure upgrade
 - Transformer/s and electrical metering
 - HV and LV cabling
 - Main switchboards
 - Electrical for mechanical requirements
- Civil and structural works (building works, ground testing, foundation work, trenching, ...)

a better tomorrow

- Equipment (boiler systems) supply and install
 - Integration and piping
 - Thermal metering
 - Water treatment
 - Drainage
- Controls and automation
- Compliance, health and safety
- Testing and commissioning
- As built drawings
- Training and sign off

Group Exercise / Breakout Discussion

- For an industrial site with two diesel fired steam boiler systems (1.2MW each) with the following characteristics
 - Peak demand measured at 1.4MW with 95% of the loads below 1MW over 12 months
 - 20 % of the energy goes to domestic hot water and washdown water heating to 65°C
 - The rest is used for processing at 150°C or more
 - Operates 24/7
- Group discussion on where and how an electric boiler would fit in this situation?

WORKSHOP QUESTION: Opex Management

Opex Management

Key considerations

- Use less energy!
 - Efficiency first
 - Managing site loads to smooth load profile
 - Using the right temperature/pressure for the correct load
 - Storage of thermal energy as appropriate
 - Smart energy management
- Energy supply contracts
 - Long term deals
 - PPA arrangements
 - Spot market exposure
- Demand side participation
 - Fast Instantaneous Reserves (<6s, last for 1min)
 - Slow Instantaneous Reserves (~60s, last for 15mins)
 - EDB demand management
 - Transpower demand management
 - Energy retailer demand management
- Onsite electricity generation

CONTRACT Spot price Electricity price **Trigger price** Time of the day

Group Exercise / Breakout Discussion

- For an industrial site with two diesel fired steam boiler systems (1.2MW each) with the following characteristics
 - Peak demand measured at 1.4MW with 95% of the loads below 1MW over 12 months
 - 20 % of the energy goes to domestic hot water and washdown water heating to 65°C
 - The rest is used for processing at 150°C or more
 - Operates 24/7
- Group discussion on where and how an electric boiler would fit in this situation?

WORKSHOP - KEY TAKEAWAYS

Key Takeaways

- Electric boilers support decarbonisation goals for NZ's process heat
- Efficiency first is important for optimisation
- Electric boilers are best suited for low to medium temperature applications (<250°C); high-temp use may be limited
- Electrical upgrades may limit feasibility early engagement with lines companies is essential
- Electricity is efficient but can be expensive special tariffs, off-peak pricing and flexibility/redundancy may improve economics
- Thermal storage enables load shifting and grid-friendly operation
- Electric boiler projects require careful planning, design, and implementation to ensure technical and economic viability.

