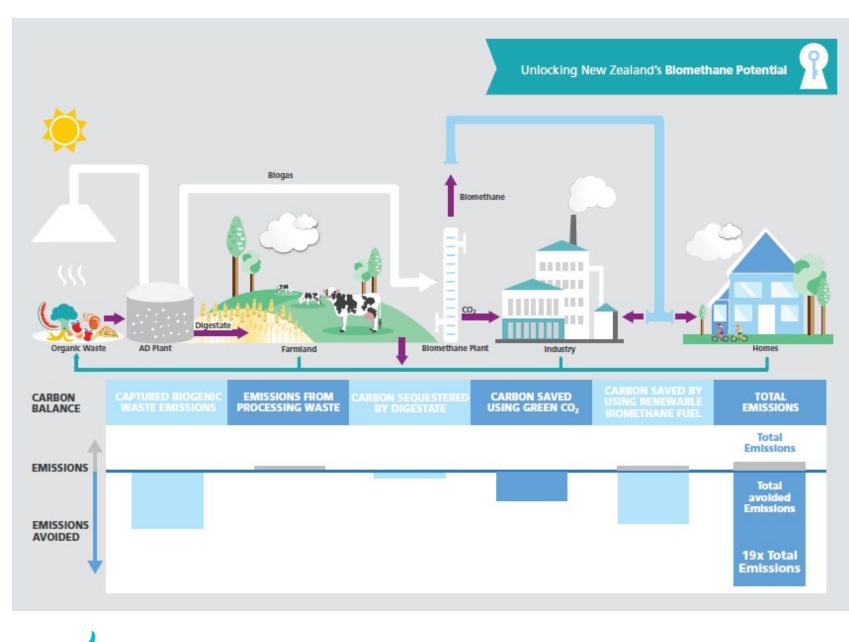
Biofuel Carbon Footprint


Biomethane Carbon Intensity Methodology

Dustin Courage, 27/05/25

Agenda

- + Intros
- + Anaerobic Digestion (AD)
- + Biomethane GHG methodology development
- + LCA principles
- + Engagement exercises
- + Avoided emissions
- + Workshop and questions



What is Biomethane?

BIOMETHANE VALUE CHAIN Unlocking New Zealand's Biomethane Potential Anaerobic Landfill Digestion Gas Digestate -CO. 2 Pretreatment 0 Food grade CO, Biogas to biomethane **Biofertiliser use on** agricultural land processing Collection of organic waste Industry -- <u>0</u> Natural gas network ¥ 77 G **Residential &** commercial Municipal Manure **Crop Residue** Industrial Municipal users effluent Organic waste Wastewater

Credit. Unlocking New Zealand's Biomethane Potential

What is Biomethane?

Credit. Unlocking New Zealand's Biomethane Potential

Purpose: GHG Methodology for Gaseous Biofuel

"Organic Waste" management processes

1. Landfill Gas Recovery

2. AD at Municipal Waste Water Treatment Plant

3. Organic waste diversion to AD Plant

Intended Use and Users

Stakeholder Type	Standards / References	GHG Accounting Typology
Certifier / Verifier / Peer	14064-1 Organisation GHG;	Organisational emissions /
Reviewer	14067 Product GHG Standard;	Product Carbon Footprint
	GHG protocol organisational inventory	
	ISO 14064-3 GHG assurance	
Project Developers /	14064-2 Project GHG accounting;	biogas /biomethane Carbon
Producers	14067 Product GHG Standard;	Intensity
	International REC schemes;	
	International Clean Fuel Standards	
Biofuel REC Certificate	European Energy Certificate System	biogas /biomethane Carbon
Scheme	(EECS);	Intensity
	Green Gas Certification Scheme (GGCS)	
	UK;	
	International REC (I-REC)	
Clean / Low Carbon	Canada's Clean Fuel Regulations (CFR);	Biomethane Carbon Intensity
Fuels standards	U.S. Renewable Fuel Standard (RFS)	
	California's Low Carbon Fuel Standard	
	(LCFS)	
Consumers /	14064-1 Organisation GHG;	Organisational emissions /
Organisation GHG	14067 Product Standard;	Product Carbon Footprint
	PAS 2050;	

Jurisdiction Scheme CI methodology / model Functional Unit System System Boundary Allocation Verification Avoided Methodology Emissions Processes Alignment Name Covered (LFG, WWTP, AD) Renewable Energy grams of CO2 Generic Cradle to Grave, Energy Allocation Annual Not addressed. Mass Balance, Europe European Sustainable Energy Directive II (RED-II). equivalent per MJ of Feedstock Certificate REDcert standards, 2023 biofuel/bioliquid/bi extraction/ Feedstock. System Scheme principles for omass fuel transportation to Calculation. EECS GHG calculation - Version [gCO2eq/MJ]. Use RNG combustion. lower heating value EECS | AIB EU 06 Logo REDCERT (LHV) into the unit gCO2eq/MJ of final fuel 2024 - RGGO Scheme -Kg CO2e / GJ - HHV 'Technology NO Must use Australia Greenpower Cradle to Gate Energy Allocation, Annual agnostic" Expansion if other Renewable certifier / auditor Renewable electricity. **Renewable Gas** products (sold) Gas REC. Certification **Certification - Rules** Materiality: 1% V2.0.pdf individual, 5% cumulative. Canada's 2024, Environment and 1 MJ of energy Cradle to Grave: Energy Allocation Annual Not required. Default Values Canada Generic Climate Change Canada, Includes end use Calculated and Fugitive Clean Fuel content based on Regulations Fuel life cycle assessment the Higher Heating combustion separate to CI. emissions., model methodology. Fuel (CFR) Optional Exclusions, Value (HHV) PDF Life Cycle Assessment delivered to the end Reporting. user and used for Model - Canada.ca requirements its energy content. U.S. GREET T1. US EPA Cradle to Grave; USA g CO2e / MJ - HHV Generic. Energy Allocation Annual Calculated Manv Renewable GREET | Department of includes Cradle separate to CI. transportation Fuel Energy to Gate, Gate to fuel types. Standard **Renewable Fuel Standard** tank, tank to Hydrogen, (RFS) wheel. BioOil to RNG. Program | US EPA Well to Wheel LCA, LHV Default.

Summary of key international REC/ LCFS scheme methodologies:

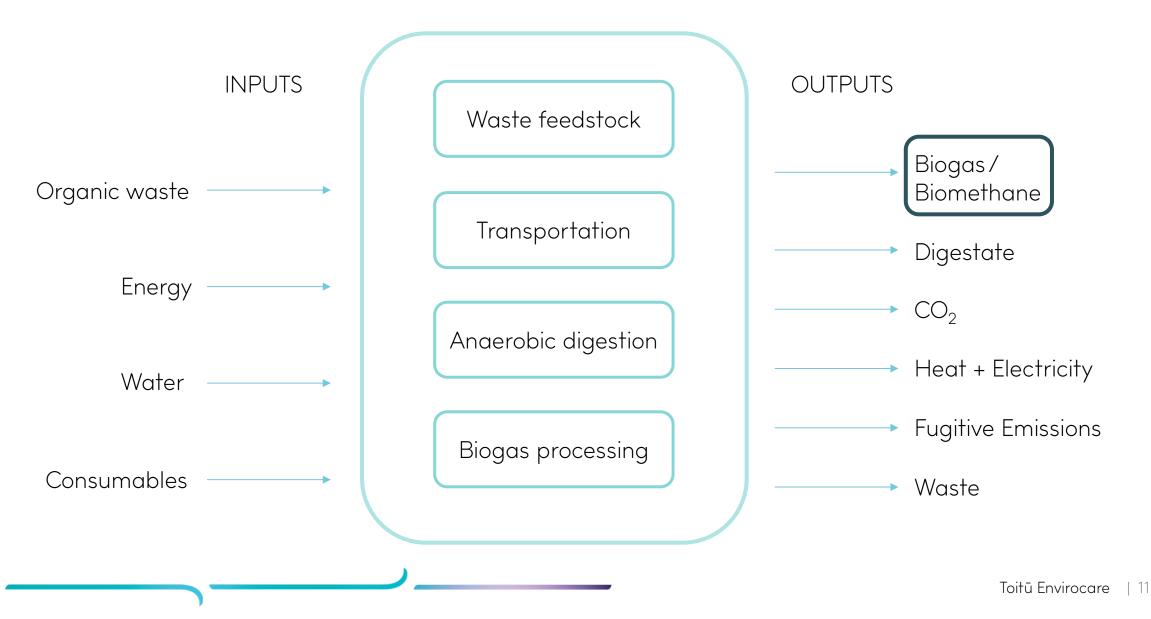
Jurisdiction	Scheme Name	CI methodology / model	Functional Unit	System Processes Covered (LFG, WWTP, AD)	System Boundary	Allocation	Verification	Avoided Emissions	Methodology Alignment
California	California's Low Carbon Fuel Standard (LCFS),	2024 CA-GREET 4.0 (under consultation), CA-GREET 3.0, LCFS Life Cycle Analysis Models and Documentation California Air Resources Board	g CO2e / <u>MJ -</u> HHV	s for WWTP, LFG and Food	Cradle to Grave; includes Cradle to Gate, Gate to tank, tank to wheel.	Energy Allocation	Annual	Calculated separate to CI.	Many transportation fuel types. Hydrogen, BioOil to RNG. DOC Default, Well to Wheel LCA, LHV Default.
UK	UK Green Gas Certification Scheme (GGCS)	2024, <u>Emissions Reporting</u> <u>- Certificates - Green Gas</u> <u>Certification Scheme</u>	gCO2e / MJ (measured as net calorific value / LHV)	Generic	Cradle to Grave; Includes end use combustion	Energy Allocation	Annual	Not addressed.	REC Producer/ User reporting. CI less than = 34.8 kg CO ₂ e/GJ
USA	American Biogas Association;	2024, Carbon Accounting Methodology for Biogas <u>American biogas council</u>	grams of CO2e per megajoule (MJ) of fuel (LHV) or grams of CO2e per kilowatt hour (kWh) depending on the end-use	Methodologie s for WWTP, LFG and Food / Organic to AD.		Energy Allocation (primary <u>): System</u> Expansion (Mass, Economic Value) if <u>cant</u> be avoided.	Annual	Covered	Avoided emissions, Data Quality Measurement requirement, frequency. Upstream boundaries.
World Biogas Associatio n	International Anaerobic Digestion Certification Scheme	2024, International Anaerobic Digestion Certification Scheme, Life Cycle Assessment LCA Guidance for AD	grams of CO2 equivalent per MJ of biofuel/bioliquid/bi omass fuel [gCO2eq/MJ]. Use lower heating value (LHV) into the unit gCO2eq/MJ of final fuel	Generic	Cradle to Gate;	Energy Allocation (<u>primary:</u> <u>secondary</u> use System Expansion (Mass, Economic Value)	Silent	Not covered.	Cradle to Gate Boundary

LCA Key Steps

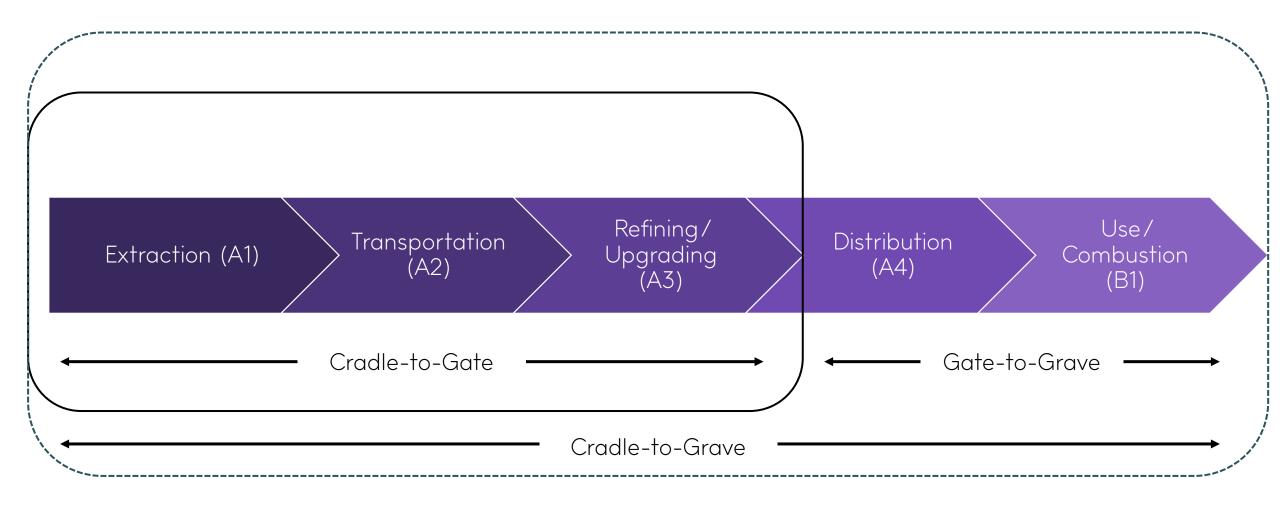
- 1. Purpose and scope of LCA
- 2. System boundary of LCA
- 3. Functional unit
- 4. Allocation approach for Co-products
- Life Cycle Inventory (LCI) Analysis Inputs / Outputs (significance)
- 6. Life Cycle Impact Assessment
- 7. Interpretation e.g. Hot spots, Improvements etc.

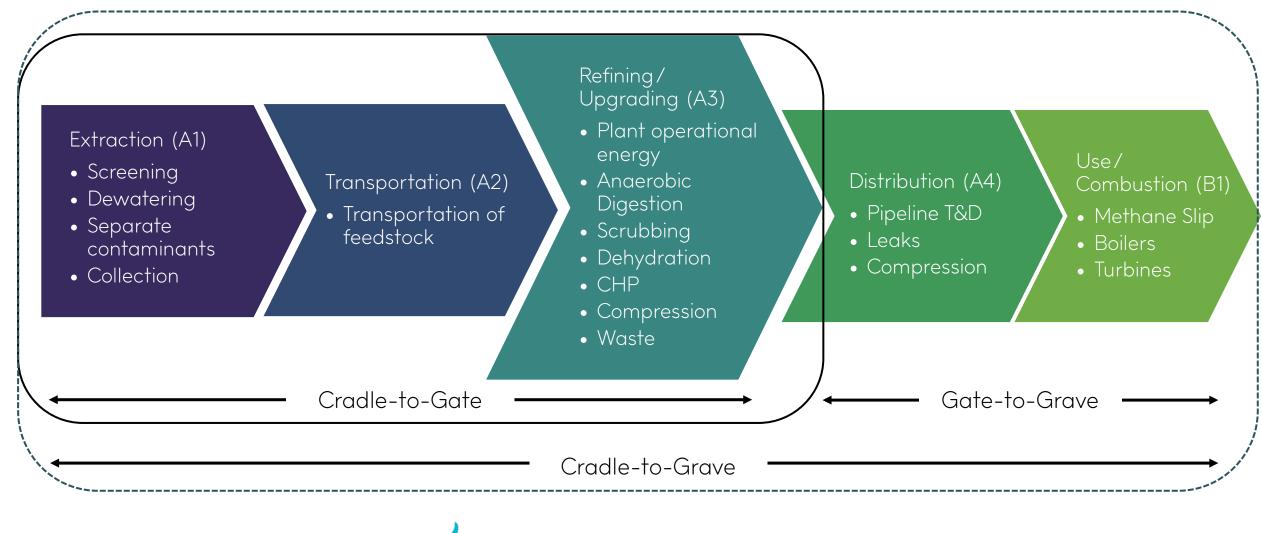
Lifecycle Assessment (LCA)

System Boundary


Functional Unit – (energy- GJ)

Carbon Intensity – kg CO₂e/GJ


Carbon Footprint of Products ISO 14067-1


System Boundary Cradle-to-Gate

Waste to AD – Product LCA

Biomethane Product LCA = Carbon Intensity

Exclusions from Cradle to Gate

Embodied emissions of plant

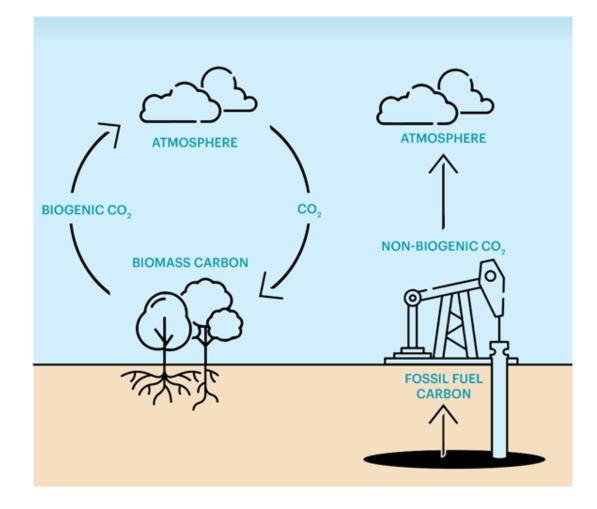
Embodied emissions of equipment

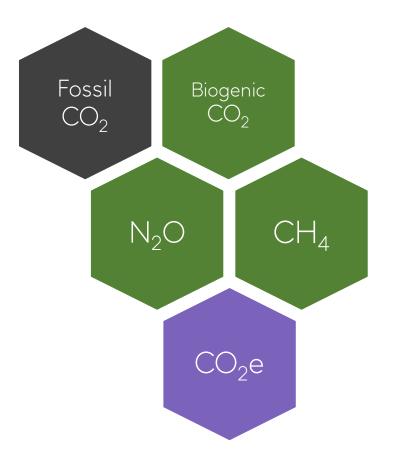
End use combustion

Digestate application to land

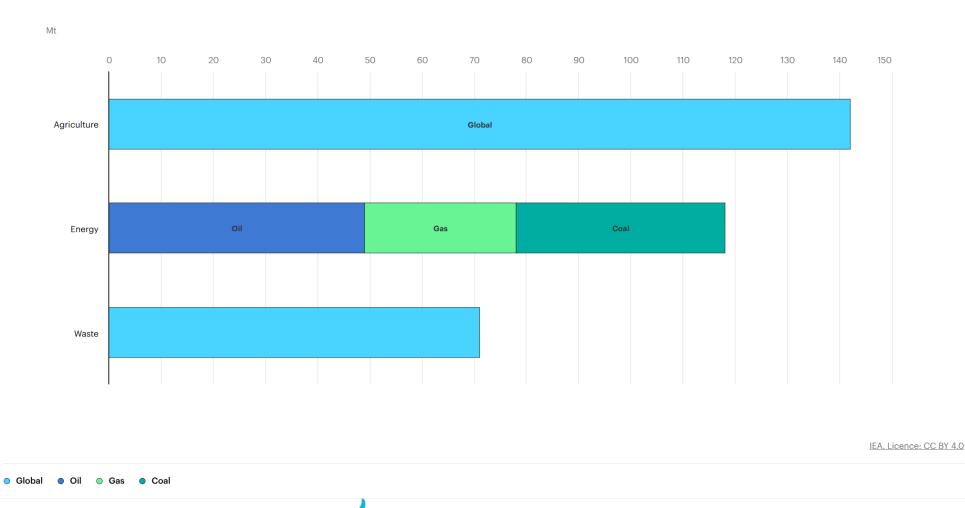
Exclusion	Justification		
Construction and decommissioning of equipment and facilities	Excluded from all the international methodologies researched. Considered non-material while being inside the system boundary.		
Indirect land use change from construction of facilities.	Excluded from all the international methodologies researched. Due to exclusion of non-waste feedstocks is assumed to be zero.		
The manufacturing of fuel transportation infrastructure (i.e., pipelines, trucks, ships, roads)	Considered non-material while being inside the system boundary.		
The manufacturing of fuel combustion infrastructure (i.e., vehicles, boilers)	Considered non-material while being inside the system boundary.		
Wastewater treatment processes upstream of the waste diversion to AD Plant.	Outside of system boundary based on polluter pays principal (waste management is a cost item/ environmental burden to prior lifecycle of materials being disposed).		
Indirect activities associated with fuel production, such as marketing, accounting, commuting, and legal activities	Considered non-material while being inside the system boundary.		
Digestate application to land & CO2 use	Digestate has positive value and is considered a coproduct and not a waste treatment process. Impacts of application are attributed to the user of the digestate as it provides positive economic and environmental benefits to the users.		

Co-Products

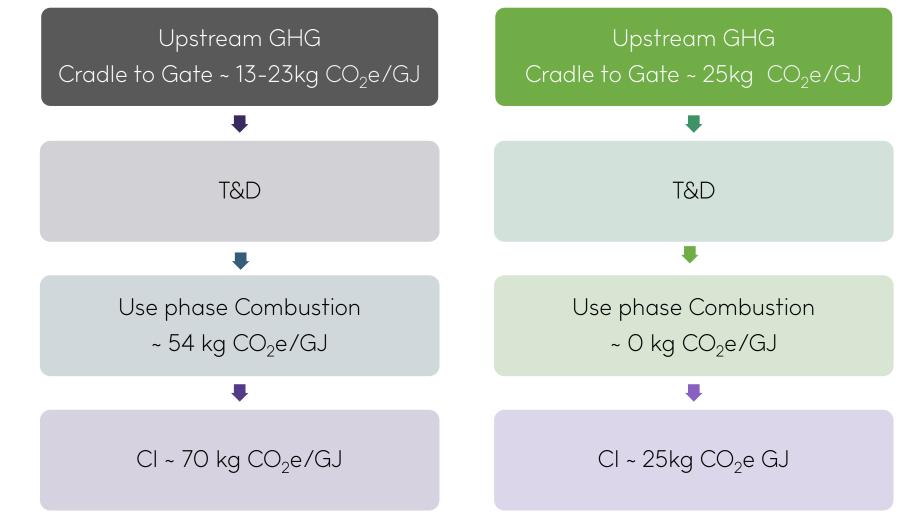

Digestate CI for digestate is Zero


 CO_2 CI for CO_2 is Zero

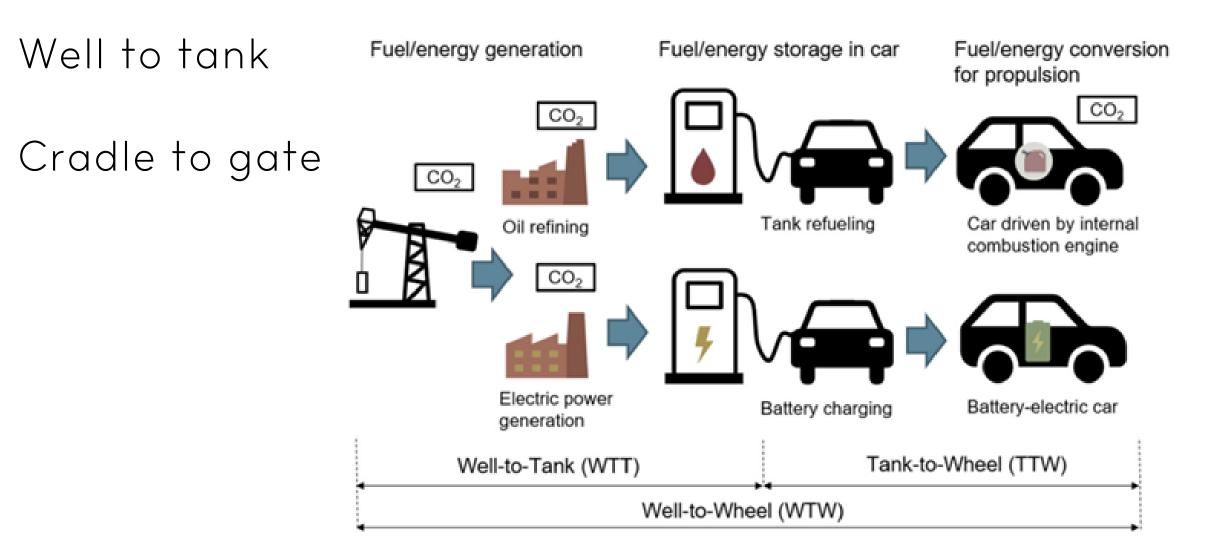
Electricity Equation 12 Electricity Co-product Carbon Intensity: $CI_{elect} = EF_{biogas} \times (\eta_{elect}/\eta_{CHP}) [kg CO_2 e/GJ of electricity]$


Heat Equation 13 Heat Co-product Carbon Intensity: $CI_{heat} = EF_{biogas} \times (\eta_{heat} / \eta_{CHP}) [kg CO_2 e/GJ of heat]/$

Biomethane Production - Greenhouse Gases


Methane emissions sources globally

Emissions Reduction - Biomethane vs Fossil Gas


Fossil Gas Emissions

Biomethane Emissions

Reduction of GHG ~ 65%

Cradle to Grave

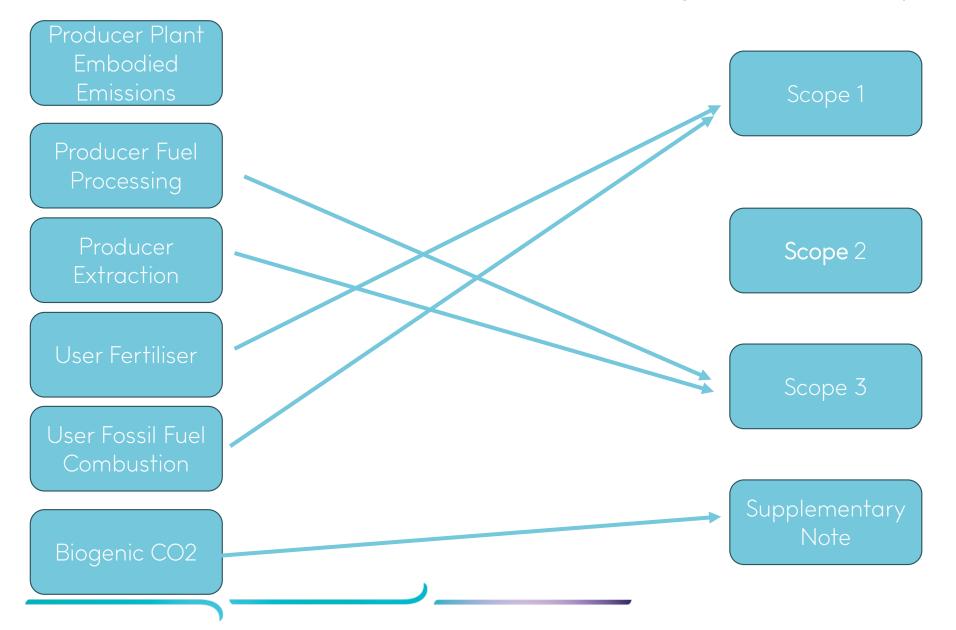
Organisational GHG Accounting

REC Scheme meets GHG P Scope 2 - Market Based Reporting Quality Requirements (8 Criteria)-Adapted per UK GGCS.

Scope 1: Direct biogenic CO_2 emissions linked to the use of gaseous biofuel are zero

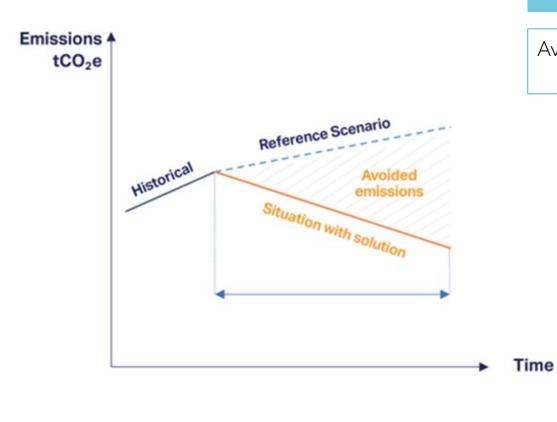
Scope 1: Direct biogenic emissions from other GHGs (CH₄ and N_2O) to be reported

Scope 3: Upstream emissions of gaseous biofuel production and transport must be reported.


ISO Category 4 - Indirect GHG emissions from products used by organisation,

Scope 3 Cat.3 - Fuel and energy related activities.

Scope 1 & 3


User Emissions	GHG P Category	Gaseous Biofuel System Boundary	Product LCA
Indirect Upstream	Scope 3, Cat.3	Upstream = (CI _{biofuel}) x V _{biofuel}	Cradle to Gate
Indirect Upstream	Scope 3, Cat.3	Downstream = T&D _{GHG}	Gate to Grave
Direct Emissions	Scope 1	Combustion	Gate to Grave

LCA Activities \rightarrow Org. Inventory

Toitū Envirocare | 22

Avoided Emissions

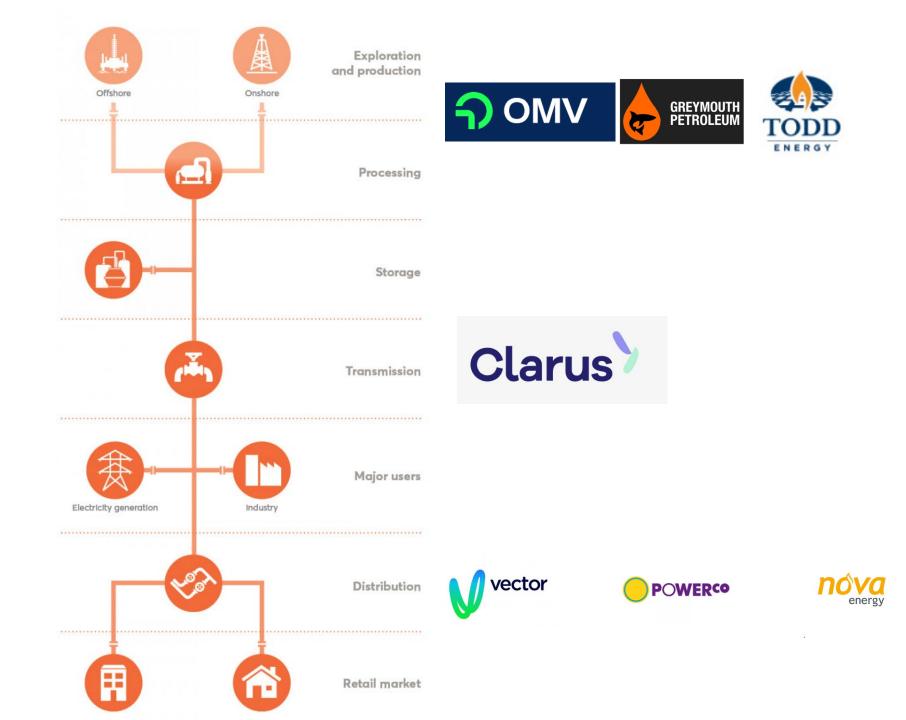
Upstream waste diversion 30-60kg CO2e/GJ

Avoided CH4 or N20 from organic waste BAU landfill etc.

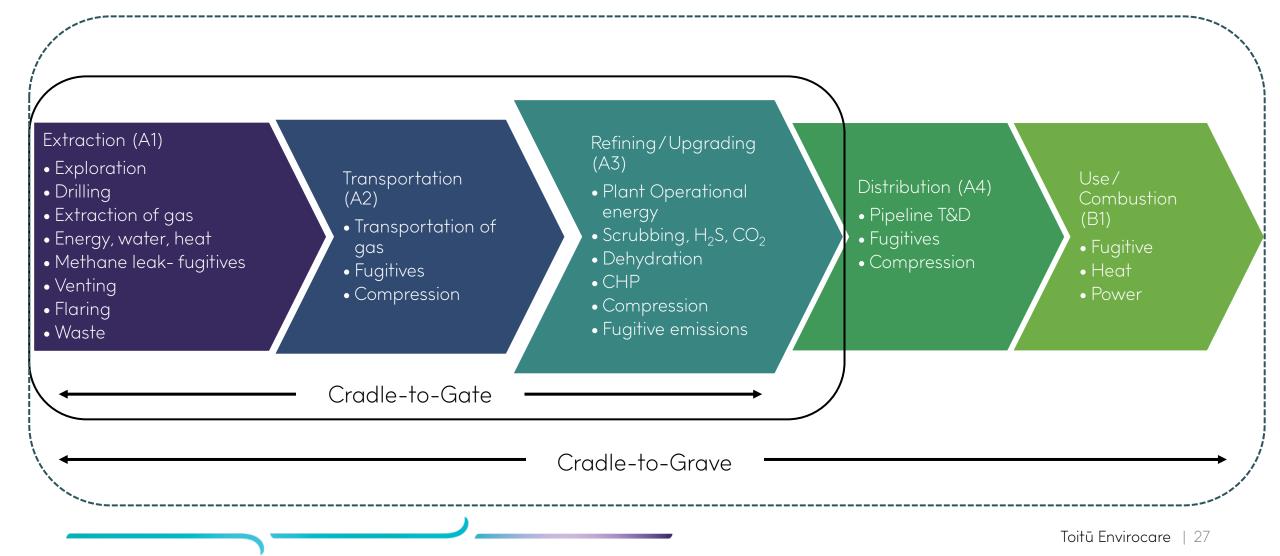
Combustion emissions 50kg CO2e/GJ

Avoided fossil combustion with "zero" carbon biogenic emissions

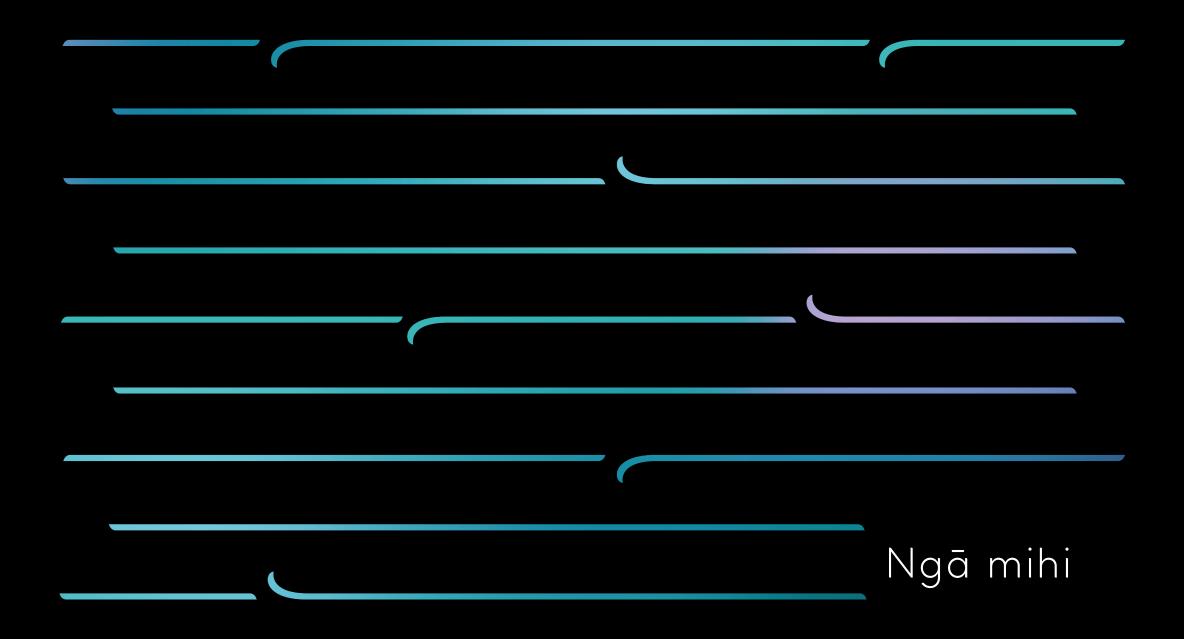
> Fertiliser/Land use 5-20kg CO2e/GJ


Avoided fossil based fertiliser and increase in soil carbon

Avoided LCA Impacts for AD


Ecotoxicity Air quality	Fossil resource depletion	Eutrophication	Waste reduction	
Landfill leachate VOCs	Avoided fossil gas	Reduce fertiliser runoff	Waste to landfill	
Fossil fuel flaring and waste	extraction		Drilling waste	

Fossil gas product LCA



Fossil gas product LCA

What are key GHG reduction opportunities within biomethane production?

Background slides

Biofuel carbon intensity

Equation 1: $CI_{biofuel} = PE \div (V_{biofuel} \times Ed_{biofuel})$

CI = Carbon Intensity of gaseous biofuel (kgCO₂e/GJ)

PE = Annual total production emissions of gaseous biofuel (Cradle to Gate) (kgCO₂e)

V_{biofuel} = Volume of gaseous biofuel produced for the annual period at atmospheric pressure and temperature (m³)

Ed_{biofuel} = Energy density of gaseous biofuel; (GJ/m³)

 $Ed_{biogas} / Ed_{BM} = \% CH_4 \times 0.0358 (LHV of CH_4, GJ/m^3)$

Annual production emissions

Equation 2: $PE = F+CE + EU + FE_T + CU+W$

PE = Annual total historical production emissions of gaseous biofuel (Cradle to Gate) (kgCO₂e)

- F = Feedstock Emissions
- CE = Combustion Emissions
- EU = Electricity Use Onsite
- FE_T = Fugitive Emissions
- CU = Consumables Used Onsite
- W = Waste Emissions

Feedstock Emissions

Equation 3: $F = \sum S_x (E_x + T_x)$

- F = Feedstock Emissions (kgCO₂ \underline{e})
- S_x = Share of feedstock *x*, mass of feedstock input to the digester. (kg)
- E_x = Emissions from the extraction of the feedstock **x**. (kgCO₂e/kg)
- T_x = Emissions from transport of feedstock **x** to gaseous biofuel system. (kgCO₂e/kg)

Fugitive Emissions

Equation 10: $FE_T = FE_{ad} + FE_{su} + FE_{ds} + FE_{LFG}$ (kgCO₂e)

1. Anaerobic digester leakage, (FEad)

2. Fugitive emissions during scrubbing biogas and upgrading to biomethane, (FEsu)

3. Digestate storage, (FEds)

4. Landfill Gas, (FELFG) – (null if not a landfill gas process)

Data Quality

1. Primary data - quantified value of a process or an activity obtained from a direct measurement, or a calculation based on direct measurements.

For instance, kWh of electricity purchased, measured at meter.

2. Secondary data - obtained from proxy processes or estimates.

For instance, using spend data to estimate emissions of a quantity of purchased consumables or using average sector default values for fugitive emissions.

Table 7: Gaseous biofuel, GHG activity data and data quality

		-		-	
Life cycle stage	Parameter / GHG source	Activity Data unit	Primary or Secondary	Activity Data source	EF source. Default
Waste feedstock extraction	Waste Input per waste type eg. food waste, DAF sludge, WWTP Sludge. Report percentage of degradable organic carbon (DOC) and percentage total solids / dry solids.	kg, DOC, %DS	Primary (based on actual formulation)	Project/ Site specific	DOC Table : Calculated
Waste feedstock transportation	Road freight	L fuel / or t.km	Primary / secondary	Freight fuel use; alternatively, Feedstock Weight and distance travel	MFE direct fuel use + WTT indirec emissions
Biogas Processing	Chemicals	kg or \$	Primary or Secondary	Site Records or expenditure	Ecoinvent
(Indirect emissions)	Electricity used from grid	kWh	Primary	energy invoices	MFE location- based EF
	Consumables	kg or \$	Primary or Secondary	Site Records, expenses	Supplier specific or Ecoinvent, MFE
Biogas Processing (Direct emissions)	Fugitive emissions	m ³ gas	Primary or Secondary		default fugitive emissions c calculate
Biogas Processing (Direct emissions)	Digester Leakage	m³ gas	Primary or Secondary	Site Measurements preferable	default fugitive emissions o calculate
	Flaring / Combustion	m ³ gas	Primary	Flare Flow control	MFE
	Digestate storage and Lagoons	m³ CH₄	Primary or Secondary	input rate of volatile solids (VS) measured monthly	Calculated per Equatio 15 Default: 0.48 m ³ CH ₄ /kg VS

Geography	kg CO2-e/GJ
UK	13
NZ	7
Australia	4 to 23

WTT NZ

Table 17: Upstream WTT emission factors for fuels and electricity (New Zealand)

Source: Agrilink New Zealand fuel and electricity total primary energy and life cycle greenhouse gas emission factors 2022 - July 2022. August 2023 (Table 2 Summary of fuel energy and life cycle emission factors)

Fuel type	Unit	Fugitive Energy Coefficient	GHG² – 2007 (gCO2e/ unit)	GHG ² – 2007 (gCO2e/ unit) ³	GHG: – 2007 (gCO2e/ unit)
					WTT - Upstream Emissions
			Scope 1 & 3	Scope 1	
Diesel	litres	1.21	3,147	2,689	458
Petrol (regular unleaded)	litres	1.21	2,760	2,341	419
Biodiesel (tallow) †	kg	0.50	1,750	-	-
Light fuel oil	litres	1.21	3,415	2,930	485
Marine diesel oil	litres	1.21	3,342	2,879	463
Bunker/Heavy fuel oil	litres	1.21	3,539	3,046	493
Intermediate fuel oil	litres	1.21	3,520	3,030	490
Heavy fuel oil (electricity)	litres	1.21	3,498	3,007	491
Aviation gasoline	litres	1.21	2,634	2,230	404
Natural Gas (Commercial)	MJ	1.13	<mark>60.7</mark>	<mark>53.8</mark>	7
LPG	kg	1.13	3,313	2,972	341
Coal (bituminous)	kg	1.02	2,761	2,607	154
Coal (sub-bituminous)	kg	1.02	2,068	1,955	113
Coal (lignite)	kg	1.02	1,512	1,433	79

Next Steps:

- 1. Worked examples and calculator.
- 2. Avoided emissions methodology.
- 3. Cover feedstocks from agricultural crops.

Gas transition plan

Policy & Regulatory

Potential roles:

- Carbon price (NZ ETS).
- Renewable energy certificates.
- Recognise CCUS.
- ► Financial or other incentives/ penalties.
- Target setting.

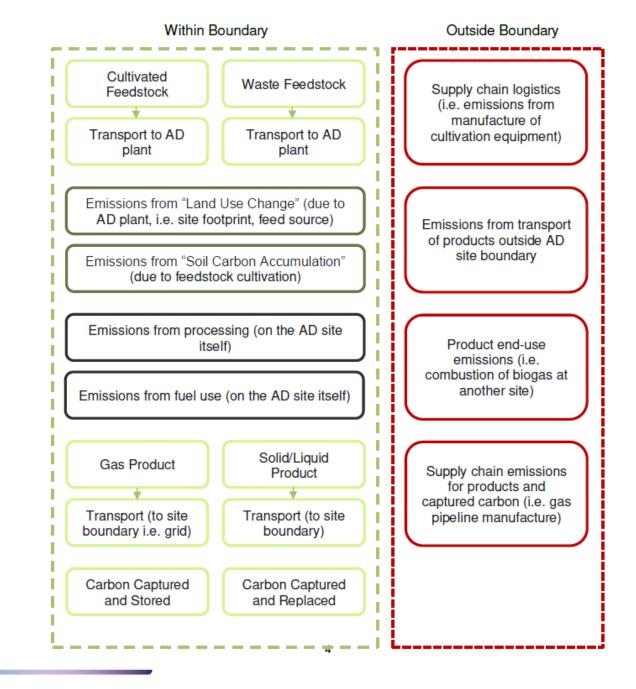
Upstream gas sector

Potential roles:

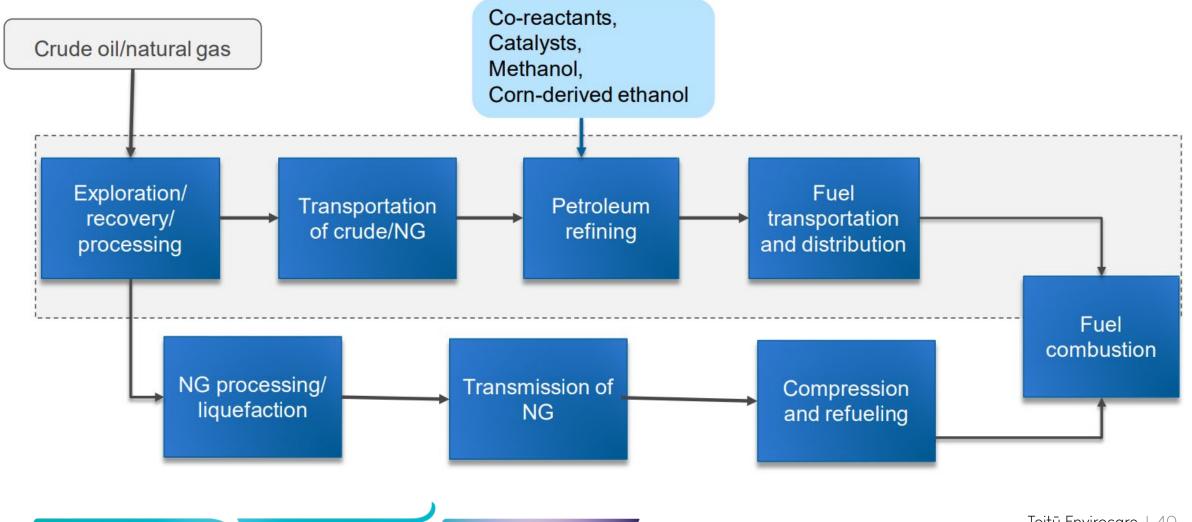
- Eliminate fugitive emissions of methane.
- Become net zero in operations.
- Lead investment in nascent, lowemissions technologies.
- Support and facilitate CCUS.

Midstream gas sector

Potential roles:


- Eliminate fugitive emissions. through better monitoring.
- Enable pipeline hydrogen.
- Support and facilitate CCUS.

Potential roles:


- Improve energy efficiency.
- Switch to renewable alternatives.
- ► Employ CCUS.
- Enter into long term supply agreements to underwrite investment in renewable energy.

Downstream gas sector

World Biogas Association

GREET

